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Preface

This report is our attempt to determine the feasibility

of an earth-moon mission using a recursive navigation technique

where only individual earth-moon fixes are used for navigational

measurements. We believe that the report is organized in such a

manner as to permit easy assimulation of the theories and techniques

by the reader with some experience in lunar navigation studies.

However, we do hope that the uninitiated can glean some informative

meaning of the results and conclusions recorded. Since the

introduction is the key to our pattern of development and sets forth

the assumptions upon which this study is based, the reader should

digest it before attempting the body of the report.

This study is by no means independent in the true sense of the

word. As is obvious from the bibliography, it is based on the

findings of several experts in the field of astronautical guidance.

In particular, we would like to single out the work of Dr. Richard

H. Battin of the M.I.T. Instrumentation Laboratory. Dr. Battin's

well-formulated recursive navigation theory and matrix techniques

are used exclusively in this study. It is safe to say that without

them this study would have never been attempted. Also, we must

acknowledge our faculty thesis advisor, Capt. Charles J. Januska,

for suggesting this study and giving us the benefit of his insight

into Dr. Battin's theory. Capt Januska's constant advice and

encouragement made it possible for us to complete this study. Last,

ii



but by no means least, we are grateful for the I.E.M. 7090

digital computer programming assistance of Mr, William R. Poole,

a mathematician in the A.S.D. Digital Computation Division (WPAFB,

Ohio). Without Mr. Poole's capable programming of our navigation

equations and his interest and patience in making the many changes

suggested as the study progressed, we could have never completed

this study on time.

This investigation has been of great benefit to us in two

distinct ways. First, we have become familiar with space navigation

theories and gained an insight into the statistical theory upon

which they are based. Secondly, we have gained invaluable experience

in digital programming techniques.

Paul J. Ellmer

Donald R. Hefty
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Abstract

The purpose of this stuidy is to determine the feasibility

of using a recursive navigation theory in which individual earth-

moon angular measurements (fixes) are processed as they are made

and combined with the current best estimate of position and velocity

to produce an improved estimate. The recursive navigation techniques

of Dr. Battin of the M.I.T. Instrumentation Laboratory are used.

Estimates made with an eazth-moon fix interval of 5 minutes or

less are compared to estimates made with conventional earth-star,

moon-star fixes of 15 minutes. Results show the earth-moon fix

to be a feasible technique.

Viii
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UNCERTAINITY IN THE ESTIMATE OF POSITICN AND VELOCITY

ALCG A LUNAR TRAJECTORY USING INDIVIDUAL

EARTH-MOON ANGULAR MEASUREMENTS IN A

RECURSIVE NAVIGkTICN THEORY

I. Introduction

The design and development of self-contained lunar space

navigation techniques are of paramount interest to many of the

space scientists and astronautical engineers of today. The most

critical factors in the design of such techniques are the accuracy

and reliability of the spacecraft equipment needed to implement

them. Since the navigation system is one of the most complex of

the spacecraft subsystems, special attention has been given to

reliability. Generally, this reliability is enhanced by the use

of simple equipment concepts. Therefore, efforts to design new

techniques, as well as modify present techniques, utilizing simpler

equipment concepts is a continuous process. This study is concerned

with the simplification of a proven concept of space navigation as

applied to an earth-moon mission and is justified on the basis that

a simplification of equipment can be obtained without sacrifice to

accuracy.

Statement and Analysis of the Problem

A unique injection (launch)velocity imparted to an earth orbiting

1
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vehicle at a specific point in space will result in an unique

preplanned trajectory. As a result of inject.on velocity errors,

however, the spacecraft will not follow this preplanned trajectory.

Therefore, in order to determine the actual trajectory navigational

information must be obtained during the flight. A source of this

navigational information in space is the observation of the angle

between selected celestial bodies as seen from the spacecraft. It

can be readily appreciated that an angular measurement between two

celestial bodiew is unique to only one point in space for any given

time. Each angular measurement (navigational measurement, nariga-

tional fix, or simply, fix) need not determine the position and

velocity of the spacecraft; the information from a series of

individual fixes taken over a period of time may be combined as a

recursive operation in which individual measurkments are processed

as they are made and combined with the current beat estimate to

produce an improved estimate. Theoretically, six auch fixes would

suffice to determine the position and velocity of the spacecraft.

However, due to the inherent inaccuracies of the onboard angular

measurement devices (an optical sextant in this study), statistical

methods based on the known statistical behavior of these devices

are necessary to ascertain the uncertainty (rz.s. error) in the

position and velocity estimate obtained*

The recursive navigation thco: y of Dr. Richard H. Batti' of

the M.I.T. Instrumentation laboratory is used in this study

2
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(Ref 3:303-340). This theory involves the formulation of an

optimum linear estimate as a recursive operation in which the

best estimate of position and velocity obtained by the beat choice

of navigational fix is combined with newly acquired information to

produce an improved estimate. The derivation of the optimum linear

operation is based on the application of a simple least-squares

estimation technique.

The Problem. This study is concerned with the determination

of the uncertainties iv the estimates of position and velocity

along a lunar trajectory using individual earth-moon engular

measurements in a recursive navigation theory. The -;.mar trajectory

in this study is definei as an elliptical path from a parking

orbit about the earth to a point near the moon's sphere of influence

,see Appendix A).

In previous studies made with the recursive navigation theory

outlined, navigational measurements were made along the spacecraft's

trajectory using various star-planet combinatiocs. At each pre-

planned measurement time, the particular star and planet (in a lunar

trajectory study, several prominent stars and the planets, earth

and moons are usually considered) contributing the least uncertainty

in the estimate of position and velocity is selected. The analysis

of the studies using this method, referred to as Fix 2 in this study,

shows that acceptable accuracy was obtained (Ref 2:35-36).

In this study the fix at each preplanned point in time ilong

the spacecraft's trajectory was restricted to the measurement of

3
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the angle between the earth and moon only. This method is referred

to as Fix 1 in this study. At first glance, this restriction seems

to be unworthy of investigation because, given the same fix times

for Fix 1 and Fiz 2, it is obvious that Fix 2 is superior to Fix 1.

However, considering smaller time intervals between the measure-

ments of Fix 1, the situation takes on a new prospective. In Dr.

Battin's studies, Fix 2 (Ref 2:28) was restricted to time intervals of

no loss than 15 minutes because of the time required to reposition

the optical sextant to the next star-planet fix. In Fix 1, since

the sextant is measuring only the earth-moon angle, no complex

positioning arrangement need be implemented. Since the earth and

moon is continuously monitored, fixes can be taken at much smaller

time intervals. This allows more measurements to be made over a

given span of time and increases the accuracy of the estimate of

position and velocity at the end of that span.

Time-intervals as small as 30 seconds were considered practical

for Fix 1, since the only time restriction of any consequence was

considered the processing time of the spacecraft's onboard digital

computer. Therefore, in essence, this study is an investigation

of using Fix 1 along a lunar trajectory at time intervals less

than 15 minutes in a recursive navigation theory to determine whether

or not it will give results comparable to Fix 2 at a time interval

of 15 minutes.

Pattern of Developent. The following sections attempt to oitline

the recursive navigation theory and show how it is applied to Fix 1

and Fix 2 to obtain the uncertainties in the estimate of position

4
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and velocity along a lunar trajectory.

Section II contains a brief outline of the nature of the

single observation fix and the linearized trajectory equations

which are used in the recursive navigation theory. This section

is supplemented by Appendixes A, B, and C. Appendix A describes

the basic considerations in planning a lunar trajectory. The

navigational fix equations are presented in Appendix B, while

Appendix C presents the parameters of the lunar trajectory used

in this study and states the equations which represent the

deviations in position and velocity along the reference trajectory.

Section III gives some basic statistical considerations

for the navigation theory and outlines the equations which define

the uncertainties in the estimate of position and velocity at

any point in tim3 along the spacecraft's trajectory. Appendix

D supplements Section III by presenting the assumed initial

errors at injection of the spacecraft into its lunar trajectory

and the assumed error of the optical sextant considered.

The results of Section IV graphically portray the comparison

between Fix I and Fix 2 for different time intervals along the

trajectory. In addition to this comparison, other factors observed

which relate to the uncertainty in the position and velocity

estimate using °:°x 1 are presented. These factors are:

1. The effect of the inclination between the plane

of the spacecraft's reference (preplanned) trajectory and the

orbital plane of the moon.

5
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2. The effect of the assumed r.m.s. error of the

onboard optical sextant.

3. The effect of including in Fix I the apparent angular

diameter measurements of the eartb and moon.

The conclusions of Section V discuss the results obteined using

Fix 1 and their meaning in terms of the compatability with uncertain-

ties in position and velocity using Fix 2. Possible extensions to

this study are outlined in the recommendations of Section VI.

Assumptions. The solution of this problem was based on the

following assumptions:

1. The spacecraft's motion is adequately described in a single

inverse squared gravity field (earth). This assumption is discussed

in more detail in Appendix A.

2. The location of stars was arbitrarily selected along

the six axes of the space coordinate system (Appendix C) and at

an infinite distance. This assumption is valid because the

direction of the stars, corrected for aberration and parallax for

the period of a lunar mission, are, for all practical pu:poses,

unvarying regardless of vehicle position. Also, aboard the space-

craft the stars are unobscured and appear as point sources of light.

3. The features of the moon can be readily observed

from a spacecraft and the terrain features on earth will also be

ubservable from the spacecraft despite some degradation due to

atmospheric effects. Therefore, the use of an onboard optical

sextant suggests itself as one s~it~l technique for making angular

measurements.

6
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4. The only equipment inaccuracies considered are in

the optical sextant of the spacecraft's navigational system. In

addition, the optical sextant is assumed to have a known random

and independent error. Section III and Appendix D outline this

assumption in more detail.

5. The deviations from the reference trajectory are

small enough to allow the use of linearized techniques. This

assumption is justified on the premise that only small deviations

can be tolerated on this type of mission without making corrective

techniques impractical because of the limited fuel capacity of

the vehicle.

6. Initial position and velocity errors can be

predicted within a certain tolerance. The prediction used in

this study is outlined in Appendix D.

7. Only the outbound portion of a circumlunar mission

between an earth parking orbit and the moon's sphere of influence

was considered. This assumption is discussed further in Appendix

A.

8. Finally, the onboard computer is capable of storing

all pertinent constants and computing the navigation and guidance

problem in the time allowed.

Notational Conventions

The notational conventions used in this study are those used

by Dr. Battin (Ref 2:2). Most of the equations in this report

7
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are three-and six-dimensional vector equations and are denoted

by a capital letter such as A, K, T, etc. A column matrix of

any dimension is represented by a lower case underscored letter

T
such as a. A vector transpose is denoted a and the scalar or

dot product of two vectors a and b is written a Tb. An overscorce

denotes the average value, therefore, a is the average value

of the vector a.

8



II. A Linearized Navigational Theory

A single angular measurement made at a known instant of time

is sufficient to fix the position of the spacecraft in one

coordinate. Succeeding measurements combined with updated position

information from preceding measurements sLufice to accurately determine

the spacecraft's position and velocity (Ref 2:3-4). The

practicality of this method is based on the fact that vehicle

dynamics are governed by known laws and the assumption that

deviations from a preplanned trajectory are kept small enough to

permit linearization of the problem. A discussion of the nature

of the single angle fix and of the linearized trajectory equations

which constitute this method is outlined in this section.

A Single Observation Iix

As stated, a single measurement serves to fix the position of

the spacecraft in one coordinate, if a linearized theory is

assumed (Ref 8:12). It is shown in Appendix H that the deviation

in position, Sn, of the spacecraft from the reference path is
related to the deviation in angular measurementv An, by

S An = hnT rn (1)

if the observation is made at a known instant of time, tn. The

vector hn is a function of the geometry of the celestial objects

measured and the type of measurement.

9
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Because of the inherent dynamic coupling of position and

velocity, the result at a later time, tn+l, of a measurement

made at tn does not lend itself to a simple geometric interpretation.

However, to provide a geometric description it is convenient to

define- the state of the vehicle dynamics at t1 by the six dimensional

deviation vector

- :1 
(2)

where S T., is the deviat'.on in velocity. The relationship

between and 2 x, is simply

where Tn+l,n is referred to as the "state transition matrix" and

is defined later by Eq (19).

Equation (1) may be written in terms of as

A =Xn (4)

where the rectangular K matrix is defined by

K [oj6l (5)

By combining Eqs. (3) and (4), we hare

AU -nTKT n+l,n S -l(6)

Six observations made at different times would provide a set

of six equations of the form of Eq. (6). If no two of the

component directions we:e parallel and the measuring device used

10
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to obtain An was perfect, then the deviation vector could be

accurately computed.

Matrix Solution of the Tra_ - Equations

A certain collection of so-called "perturbation" matrices are

basic to the solution of the linearized trajectory problem. The

following shows how these matrices may be obtained as solutions of

the linearized differential equations.

Let !s(t) and !,(t) denote the position and velocity of the

spacecraft in an earth centered inertial coordinate system, and

let g(1s,t) denote the gravitational acceleration. Then

dv

are the basic free fall equations of motion.

Let ro(t) and n(t) represent the position and velocity

associated with the reference trajectory at time t and define

r(t) =r s(t ) - ro(t) , v(t) = Vs(t ) - vo(t) (8)

Then, the deviations S r and S v may be approximately related by

the line-arized differential equaticns

dt dt

where G(ro,t) is a 3 dimensional matrix whose elements are the

Dartial derivatives of thr components of g(ro,t1 with respect to

the components of r o (Ref 15:62.

il
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A fundamental set of solutions of Eqs (9) nas been developed

(Ref 3:210). Let tL and tA be the time of launch and arrival,

respectively. Then define the 3 dimensional matrices R(t), R(t)*,

V(t) and V(t)* as the solutions of the matrix differential

equations

dR(t) =V(t) = V(t)*
dt dt (10)

dV(t) = GR(t) ± * = GR(t)*
dt dt

which satisfy the initial conditions

R(tL) = 0 R(t Av 0

V(tL) = I V(t I

If we now write

= Rn C + Rn* c* (12)

_% = vnc + Rn* C* (13)

where Sr n = sr(tn), Rn = R(tn) , etc., and c and c* are arbitrary

constant vectors, it follows that these equations satisfy the

linearized differential equations (9). They also contain precisely

the required number of unspecified constants to meet any valid set

of initial or boundary conditions.

The elements of the Rn and Vn matrices represent deviations

in position and velocity along the reference trajectory resulting

from velocity deviations at launch. A similar meaning is given

12
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to the Rn* and Vn* matrices as a result of deviations in velocity

at the arrival point. A complete description of these perturbation

matricas can be found in the literature (Ref 33:58-66).

There are a number of techniques for computing these

perturbation matrices. Since this study deals with an elliptical

trajectory, a simple and straight forward matrix technique

formulated by Dr. Battin (Ref. 1:761-773) was used. This

technique, which is modified for the special case of a spacecraft

trajectory coplanar to the orbit of the moon, is outlined in

Appendix C.

The State Transition Matrix

The state transition matrix was defined by Eq (3) and can be

computed from a knowledge of the Eqs (12) and (13). First, c

and c* must be obtained as solutions of Eqs (12) and (13). After

some simplification

C = -Ln(cn* S I I (14)

-" = -Ln*-l(Cn S.rn - fn) (15)

where

Cn = Vn Rn 1

Cn = Vn* Rn -  (16)

Ln = Vn - Cn* Rn

In = Vn* - Cn Rn*

Thus, with c and c* determined, the position and velocity deiations

at any time tn are given by Eqs (12) and (13).

13
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In terms of the six dimensional deviation vector defined

by Eq (2),

S Rn vn*J (17)--n V Vn

A similar relationship can be written for xn+l" Considering

Eq (3) we have

xn+l = kn: R-lXRnR (18)

Using Eqs (16), we have

Tn+lRn L-Rn+l* (C n * L) 0 - n*] (19)
Vn+l Vn+l 0 (Cn  Ln* )  I Cn - 1

Further simplification gives

Rn+1 Rn+l*- (Rn- An*Vn)-i (An*Vn - Rn)- An* (20)

Tn+ln Vn+l Vn+l jL(Rn*- AnVn")-l (AnVn* Rn*) -Anj

(Ref 3:305)

where
-1 -1

An =Cn =RnVn

A n = - rn (21)

The form of Eq (2)) was motivated by the values of R(tL) and

R*(tA). From Eqs (16) it follows that these two singular matrices

would make the computation of C(tL) and C(tA)* impossible. However,

this difficulty is avoided by the use of Eq (20).

14
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An interesting feature of the state transition matrix,

which allows the checking of its computation, is that it is

an example of a symplectic matrix (Ref 3:306) . An even-dimensional

matrix, A, is said to be symplectic if

ATJ A = J (22)

where

j= (23)

In addition, the absolute value of the determinate of a symplectic

matrix is equal to unity. These features were used to check the

computation of the state transition matrices computed in this

study.

15
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III. An Estimate of Position and Velocity Deviation

The previous section described a simple position and v .ocity

determining technique which made no provision for the inherent

errors common to all navigational measuring instruments. Usually

it is necessary to discuss navigational accuracy on a probabilistic

rather than absolute basis because of the inexact knowledge of

the error coefficients of the various measuring devices in the

system. Therefore, a statistical evaluation of the accuracy of

the navigation process must be made. In this study only the

optical measuring device was considered as a source of the

uncertainty. Accurate estimates of position and velocity along

a space trajectory can be obtained by applying the method of least

squares to the system's errors. A linear least squares estimation

procedure, where all statistical calculations are based on first

and second order averages, is outlined in this section (Ref 2:4-6).

St - ;ical Parameters and Definitions

Berore discussion of the statistical parameters, it is

ne-essary to define some terms

SAn = the true deviation in the angle An from its reference
value at t n

An = the observed or measured deviation

SAn  the estimated deviation

An = extrapolated from a previous estimate by the
s ate transition matrix (T)

an = the error in the measurement of SA n

16
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bn = the error in position estimate

d = the error in velocity estimate
--n

Similar definitions can be applied to Sn, Eq (2).

From these definitions we have,

An = An + an  (24)

In the subsequent analysis, an will be assumed to be a random

(n = o) and independent (an-lan = o) variable. The application

of the Central Limit Theorem indicates that the probability

distribution function for the system error will be normally distributed

(Ref 9:315). Furthermore, the standard deviation (6n) for the

system error will be the root-sum-square combination of the

standard deviation for the individual error coefficients. Therefore,

in this study the variance of the optical measuring device can

be computed by
2

n = (25)

In the next sub-section, an estimation procedure is discussed

for determining an optimum linear estimate of S xn, denoted

by S_. An integral part of this estimation technique is the

correlation matrix of the measurement errors in the estimate.

If we write

x= x+e (26)

then

e2n = ](27)

17
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The correlation matrix of the measurement errors is thus defined by

[ T T 1 2
E = et% b b kbn E En =ni T n n (28)

where the traces of EnI and E.4 are the 'lean-squared errors in

the estimate of position and vslocity, respectively or as it is

used in this report, the uncertainties in position and velocity.

Again from the definitions we have

_Tn i 1 (29)

In like manner, the extrapolated correlation matrix can be

shown to be
Ent  T
= Tn,n-l an-i Tn ,n-1 (29A)

Inproving the Estimate

The development of an optimum linear estimate as a recursive

operation in which the current best estimate is combined with

newly acquired information to produce a better estimate was

presented by R.E. Kalman (Ref 12) and completely formulated by

R. H. Battin (Ref 2:16-18). This development assumes that an

initial En 1 (Appendix D) is known and that a single navigational

measurement of the type described in Appendix B is made at time

t n  A linear estimate for the deviation vector S xn is expressible

as

-_' A + wn( n n(30

where 2! is a weighting factor which will be chosen so as to

minimize the mean-square error in the estimate. It can be

18
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shown that the correlation matrix, E defined by Eq (28) = Y be

expressed as a function of w as

En(4) = (I - Y-h-TKT) En(I - D-40,T) + YnwnTa2 (31)

In order to determine the optimum w., the technique of

variation calculus can be shown to yield

e 2( 1 ) =2tr W~~~n (I-XyT) +4 l aUJ (32)

If en (w.) is to vanish for all1 variations SIn. then it must

follow that

.n = Znmin (33)

where the scalar coefficient on is computed from

en 1%. + an2 (314)

Having obtained the optimun , En may be written as

Rn= -In ( n (_n &Fa) (3-5)

Equations (30) and (35) then serve as recursive relations to be

used in obtaining improved estimiates of position and velocity

deviations at each of the measurement times selected along the

spacecraft's trajectory.

19
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The effiecS- ..t position and velocity uncertainties by use of

various navigation fix achemes altering the Incliration angle

b etwen the reference traJectory plane and the lunar plane,

considering different values for the variance in the errors of the

optical meauring device, and using different time intervals bewt r.n

ech navigation fix is outlined in this chapter. Iinally. a comarison

between Fix 1, which uses only earth--on angular measur ents for

input into the recursive navigation equations and Tix 2, which considers

and selects the baat af earth-star, aon-star, ead earth-on angular

tastrwmhnts is presented in the last section of this chapter,

Since only the outgoing elliptical portion of the lunar trajectory

is considered in this study, the final position and velocity
uncrtainties an listed actually represent the initial uncertainties

for the selenocentric hyperbolic portion of the lunar trajectory. A

value of one statute aile (P1f .513) was selected as the desired

maxim= un,*rtainty in final position and 0.025 mh was chosen as the

desired Ixia uncertainty in final velocity. This desired final

m a velocity corresponds to approximately 0.001% of the velocity
of the veil. at that point (Fbf 6-31; 7~f 16s755). It was

desired to maintin the axi;m position and velocity uncertainties

during the flight within an order of mignitude of those !ound by
Bttin (Fbf 2 5-36). To help indicate the general shapes of the

20
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curves, the tables in this chapter also include values at the midcourse

point, which for this study is considered that point corresponding to

25 hours of flight.

Effect of Navigation Ybasurement*

The effect of using various navigation fix schemes on the

uncertainties in position and velocity is presented in Fig. 1 and

Table I. Fix 1 uses only earth-moon angular measu rments for input

into the recursive navigation equations; Fix 2 considers and selects

the best of the earth-star, moon-star, and earth-mon angular

measurements; Fix 3 considers and selects the best of the apparent

diameter measurements of the earth and moon, and the earth-moon

anguLar measurements; and Fix 4 considers and slects the bes'" frm

all of the above measurements. For each fix, the beat'measurement

is considered that measurement which results in the smallest value

for uncertainty in position. The measurements are further discussed

in Appendix B. The inclination angle between the lunar plane and

tihe reference trajectory plane is 900 (Appendix A) and the time

interval between each navigation fix is hold constant &t 30 minutes.

As indicated in rig. 1, the position and velocity uncertainty curves

each use different values for the variance in the errors of the

optical measuring device.

The position uncertainty curve for Fix 3 exhibits unexpected

results which have not been explained, although the pertinent equations

and computer program have been checkea for possible errors.
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Table I

The Effect of Navigational Measurements on Uncert&inty in Position
and Velocity

Note: This data is taken from the same computer results used to
plot Fig. 1.

Nay. Position Uncertainty (mi.) Velocity Uncertainty (mph)

Fix Maximum Mid. Final Maximum Mid. Final

1 13.667 (2 .5 )a 2.841 .951 9.829 (1.)a  .1411 .0189

2 2.092 (14.) a 1.930 .787 5.161 (.5)^ .0959 .0152

3 9.321 (9.0)a 3.222 .972 b b b

4 2.081 (16.)a 1.930 .787 b b b

a Time in hours after time of launch when maximum occured.

b No data taken.

Table II

The Effect of the Inclination of the Lunar and Spacecraft Planes on
the Uncertainty in Position and Velocity

Note: This data is taken from the same ,.omputer results used to
plot Fig. 2.

Inclin. Position Uncertainty (mi) Velocity Uncertainty (mph)
Angle -_...

,(degrees) Maximum Mid. jFinal Maximum Mid. Final

0 56.610 (4. 8 )a 13 .9 46 2.331 15.349 (.25)a .7609 .0597

30 15.264 (1.5)a 10.677 4.075 17.057 (.25) .5137 .0539

60 39.166 (4.8)a  3.450 1.306 15.830 (.25) a .1809 .0243

90 5.693 ( 4 . 3 )a 1.916 0.665 16.126 (.25)a .1008 .0135

a See Table I.
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As expected Fix 1 has the largest uncertainty in position (13.667

miles) since it uses only earth-moon angular measurements, but

the curve for Fix 3 which also considers apparent earth-moon

diameter measulements crosses and remains above the former curve

after 7.5 hours of flight. Because of these results, the earth

and moon diameter measurements are not considered in the remaining

sections of this chapter.

All final position uncertainty values are below one mile. The

velocity uncertainty curve for Fix 1 remains above the curve for

Fix 2 for all flight times and the Fix 1 curve reaches a maximum

of 9,.829 mph, compared to a maximum of 5.160 mph for Fix 2. Both

final velocity uncertainty values fall below 0.025 mph.

Effect of Inclination

The effect of the use of coplanar and non-coplanar trajectories

on position and velocity uncertainties using Fix 1 is shown in Fig.

2 and Table II. Inclination angles of 0°, 300, 600, ard 900 are

considered. The time spacing between each navigation fix is held

constant at 15 minutes and a constant variance in the errors of the

measuring device is assumed. Curves for Fix 2 and a non-coplanar

reference trajectory are also shown for comparison purposes.

The coplanar trajectory resulted in the highest maximum value

for the uncertainty in position (56.610 miles) but the curve drops

below the curve corresponding to an inclination angle of 300 after

30.25 hours of flight. For an inclination angle of 900, the position

uncertainty curve reaches a maximum value of only 5.693 miles and it
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is the only curve to drop below one mile. The maximum velocity

uncertainties compare in order of magnitude for all values of

inclination angles considered but the curve for 900 drops much

faster than the others. The curve for all inclination angle of

300 crosses above the curve for 600 after 14.50 hours of flight.

Only the final velocity uncertainties for inclination angles of

600 and 90° are below 0.025 mph.

Effect of Fix Spacing

The effect on position and velocity uncertainties by using

different time spacings between each navigation fix is shown in

Fig. 3 and Table III. These values are for Fix 1 using an inclination

angle of 900 and assuming a constant variance in the errors of the

optical measuring device. Curves and data are shown for fix time

intervals of one hour, 30 minutes, 15 minutes, 5 minutes, and one

minute.

From the curves it can be seen that the shorter the time spacing

between each navigation fix, the lower the uncertainties in both

position and velocity. For a time spacing between each fix of one

minute, the maximum uncertainty in position is only 0.430 miles

as compared to 12.34 miles for a one hour time spacing. Only the

curves for time intervals of one and five minutes fall below a final

valie of one mile. In general the velocity uncertainty curves follow

the same pattern as the position curves, although their maximum values

do not. The maximum velocity uncertainty of 16.126 mph occurs on

the curve for a fix spacing of 15 minutes and the smallest maximum of
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Table III

The Cffect of Fix Spacing on the Uncertainty in Position and Velocity

Note: This data is taken from the same computer results used to
plot Fig. 3.

tf Position Uncertainty (mi.) Velocity Uncertainty (mph)

(Hours) Maximum Mid. Final Maximum Mid. Final

1 12.337 (3 0)a 3.709 1.295 9.892 (1.0)' .1946 .0260

% 11.392 (2.0) a 2.686 .932 9.829 (1.0)a  .1411 .0189

4 5.693 (4.3) a 1.916 .665 16.126 (.25)' .1008 .0135

1/12 1.681 (.17) a 0.864 .366 12.527 (.17) a  .0454 .0075

1/60 0.430 (4.4)a 0.203 1 .054 11.363 (.02) a  .0109 .0014

a See Table I

Table IV

The Effect of Sextant Error on the Uncertainty in Position and Velocity

Note: This data is taken from the same computer results used to
plot Fig. 4.

Sextant Position Uncertainty (mi.) Velocity Uncertainty (mph)

Errorb Maximum Mid. Final Maximum Mid. Final

r na 2 9.304 (2.8) a 2.032 .678 16.430 (.25)' .1067 .0137

6-nb 2  6.873 (2.8) a  1.437 .480 16.272 (.25) a .0755 .0097
2aa

0nc 5.693 (4.3)a  1.916 .665 16.126 (.25)' .1008 .0135

(Tnd2  4.050 (4.0)a 11.355 .470 16.095 (.25)a .0713 .0096

a See Table I

b Cna2 is defined by Sq. D-2 in Appendix D, d'nb 2 -na 2

'nc 2 =(000005)2 rad., 2nd 2- 6 nc 2
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9.829 mph occurs on the curve for a spacing of 30 minutes. All

final velocity uncertainties are below 0.025 mph ex'ppt for the

curve for a one hour fix spacing.

Effect of Sextant Errors

The effect of using different values for the variance in the

errors of the optical measuring device on uncertainty in position

and velocity is shown in Fig. 4 and Table IV using Fix 1. The time

interval between each fix is held constant at 15 minutes and the

reference trajectory plane is inclined to the lunar plane at 900.

Four different values for the variance are considered (Table IV,

Note b).

As expected, the maximum uncertainty in position of 9.304

miles occurs on the curve related to na 2 , as this curve accounts

for the larger uncertainty in defining the horizon when the vehicle

is near the earth or moon. The maximum position uncertainty for the
2.

constant variance c is 5.693 miles. After about 25 hours of
2 2

flight, the curves corresponding to dn a and d' nc are almost

2 2
identicml as are the curves for 6 nb and cr nc . All position

uncertainties at arrival are less than one mile and the velocity

uncertainty curves follow a pattern similar to the position curves.
2

The maximum velocity uncertainty occurs on the curve for T na at

16.430 mph and the minimum is on the curve for Tnd2 at a value of

16.095 mph. All final velocity uncertainties are less than 0.025 mph.
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Comparison of Fix 1 and Fix 2

Fig. 5 and Table V show a coplanar comparison between Fix 1

and Fix 2. Fix 2, with a time spacing between each measurement

held constant at 15 minutes, is considered the standard. Each fix

2
uses cl na as the variance in the errors of the optical measuring

device. Fix I is plotted for constant fix spacings of one minute

and 30 seconds respectively. The former curve has a maximum position

uncertainty of 14.634 miles and the latter 10.095 miles as compared

to 7.011 miles for Fix 2. Both position uncertainty curves for Fix

1 drop below the curve for Fix 2 before 40 hours of flight and all

final position uncertainties are less than one mile. Fix 1, with a

time spacing between each fix of 1 minute, has a maxim.m velocity

uncertainty of 12.878 mph and the same Fix, with a time spacing

between each fix of jO seconds, has a maximum velocity uncertainty of

12.614 mph as compared to 14.953 mph for Fix 2. Both velocity

uncertainty curves for Fix 1 exhibit a plateau region between times of

flight of approximately 3 to 15 hours which are probably the result

of the non-optirium nature of the earth-moon angular measurements during

the early part of the flight. All final velocity uncertainties

aie less than 0.025 mph.

Fig. 6 and Table VI show a non-coplanar comparison between

Fix 1 and Fix 2. The inclination angle is 900 and the same variance

in the errors of the optical measuring device is assumed as used

above. The time spacing for Fix 2 is again 15 minutes and Fix 1 is

plotted for time spacings of five and one minutes. The maximum

position uncertainty for Fix 1, with a time spacing between measurements
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Table V

Coplanar Comparison of Fix 1 and Fix 2 (i= 00)

Note: This data is taken from t. same computer results uBea to

plot Fig. 5-

NANIv Posi.ion U-certainty (mi) Velocity Uncertaiiy (mph)Fix --....

maximum Mid 11 al vMaxim= ?Md Final

3.735 0.620 12.878 (0.18)a 0.2038 0.01591

S 110.095 (11.9)a 2.60 0.438 12.61 (0.25) 0.100.0112

2: 7.011 (.75) a 2.333 0,738 14.953 (0.25)3 0.12601 0.0200

a Soe Table I c &tf= -min

b t f= i min d Atf=30 sec

Table VI
Non-coplarar Camparison of Fix 1 and Fix 2 (i= 900)

Note: This d ' is taken from the same computer raesIts used to
plot Fig. 6.

Nav. Position Uncertainty (mi) Velocity 'T certainty (',pb)
Fix f I -

1b  2.409 (7,08)ai 1-14e 0.*2 1265(01) 0.0604 0.000

I
1d  1.302 (0.3,)aJ 0.216'0.079 11.364 (0,02)a 0.0116 0,001

c  1.507 (12.7) i l382 0.559 6.923 (0.25)8 00693 0.o10

a See Table I C tf- 15 min

b 6 t -- .5 min d tt = I min
.f
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of five minutes, is 2.409 miles and the maximum for the same Fix,

with a tire spacing of one minute, is 1.302 miles as compared to

1.507 miles for Fix 2. All final position uncertainties are less

than one mile. The maximum velocity uticertainties for Fix 1 are

12,655 mph and 11.3638 mph as compared to 6.9226 mph for Fix 2.

The velocity uncertainty curve for Fix 1, with a time spicing of

five minutes, shows a plateau region early in the flight as was

found with the coplanar curves. All final velocity uncertainties

are les3 than 0.025 mph.
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V. Concluninn

The requirement for estimating the position and velocity

accurately along an earth-moon freefall trajectory using only earth-

moon angular measurements and an on-board computer capable of

computing the recursive navigation equations has been met. As

shown in the preceding sectI.on, updating the navigation information

every minute or less for the coplanar reference trajectory and

every five minutes or less for the non-coplanar reference

trajectory will result in acceptable uncertainties in the estimate

of position and velocity.

With the use of non-coplanar reference trajectories, a tra, -

off should be obtainable between the capability of the on-board

computer and the desired uncertainties in position and velocity

measurements. This study has shown that the use of only earth-

moon angular measurements with rn on-board recursive navigation

system is a feasible navigation technique for a lunar mission.

36



GGCIEE/64-9

VI. Recommenations

Various extensions to this study are suggested by Dr. Battin's

work as outlined in i-erences 2 and 3. However, the next logical

development of this study would be the estimation of velocity

correction along the flight path needed to reach the target point

(Ref 2:21-36). In this extended study, full use could be made of

the perturbation matrices, state transition matrices, and position

and velocity estimateb generated for this study. The digital

programs used in this study can be obtainel from Mr. Poole of the

A.S.D. Digital Computation Division (see Preface) under problei

number 64024 and task number 040A-77137. It is suggested that any

new studies be based on the data for tf = 5 min. or less, inclination =

600 or 90 ° , and T % = (0.00005)2
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Appendix A

Lunar Reference Trajectory

The utilization of trajectory shapes which bring an exploring

vehicle .rom the earth to a point arbritrarily near the moon and,

which if allowed to continue, return the lunar vehicle to the

earth with such conditions that reentry and recovery are feasible,

might be attractive for both instrumented and manned flights.

Photographing the surface of the moon, determination of astronomical

constants by cbservation of trajectory perturbation, and checkout

of hardware are examples of unmanned lunar missions. The first

manned exploration flights may be "free-return" circumlunar flights

with no plan to land on the moon. If the manned mission is to

land on the moon, a "free-return" trajectory may be used so that

if difficulties arise which would make the lunar landing undesirable

the astronauts will return safely to the earth (Ref 14:1-2).

Because this is a feasibility study and to simplify the

reference trajectory calculations, several simplifying assumptions

relating to the mathematical model of the earth-moon system have

been made.

(1) 'the earth and moon are homogenous spheres and are

considered point masses.

(2) The earth is located at the center of its sphere of

influence and when the lunar vehicle is traveling inside this sphere,

its "free-return" trajectory is effected only by the gravitational
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field of the earth. Thus during this portion of flight, the

path of the spacecraft describes a conic with the earth at one

focus which will be elliptic, parabolic, or hyperbolic depending

on the insertion parameters. An analogous situation exists after

the spaceship enters the sphere of influence of the moon with the

exception that the path of the vehicle will always be hyperbolic.

The approximate radius of the sphere of influence of the moon has

been calculated to be 35,781 miles (Ref 10:29).

(3) The reference trajectory is high enough above the

earth that the effects of the atmospheric drag may be neglected.

(4) The moon revolves about the c~nter of the earth in

the lunar plane with a circular orbit of 238,857 statute miles

(one lunar unit) and at an angular rate of 0.22997084 rad/day

(Ref 10:29).

(5) The effects of the sun, planets, meteroids, and

other perturbing bodies are neglected.

(6) The effect of the pressure of solar radiation is

neglected.

The effects of the neglected factors on the lunar reference

trajectory are discussed in the literature and are not presented

in this paper (Ref 4:61-74; Ref 11:10-11; Ref 13). Deviations

resulting from the introduction of the neglected factors can, for

the most part, be compensated for by changes in the injection

velocity (Ref 7: 3-5).

The reference trajectory can be calculated from a knowledge

of the insertion parameters. To increase the operational flexibility
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of the mission, launch with a non-zero flight path angle (the

flight path angle is defined as the angle between the local

horizontal and the velocity vector) from a parking orbit will

be considered. The variable insertion conditions are the radius of

the parking orbit, flight-path angle, magnitude of the insertion

velocity, and the lunar lead angle. For a 4100 mile parking orbit

radius, insertion velocities below the parabolic escape velocity of

36,063 ft/sec will result in elliptical outgoing trajectories. The

insertion parameters selected for this study (Table A-l) will result

in a coplanar circumlunar mission that will bring the vehicle to

within 1000 miles of the surface of the moon and return the spaceship

to within 40 miles of the surface of the earth (Ref 8:23). Only the

outgoing elliptical portion of the reference trajectory from launch

to the moon's sphere of influence is used in this study (Fig A-!)

as this portion represents a large percent of the total distance

traveled on a lunar mission. The equations for calculation of the

elliptical parameters are listed in Reference 10: Appendix B.

Additional mission flexibility can be obtained if non-coplanar

reference trajectories are also considered. The lunar plane (x, y)

is inclined to the rLference trajectory plane (a,b) at various

inclination angles to obtain the effect of using non-coplanar

reference trajectories. This method of inclining the two planes

eliminates the necessity to recompute the state transition matrices.

Transfoumation from the lunar coordinates (x,yO) to the inertial
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Tabl e 1-. 1

Trajectory Insertion Paraeter1

Insertion Symbol value Remrks
Parameter

Radius of
Parking Orbit L 4100 miles The radius of the

intermediat, or
launch obit as
measured f r the
center of the earth

Flight-path I 40 de.ree Angle between the
angle local horizon and

the velocity vector

velocity 35,900 Value chosen is
ft/sec 163 ft/sea less

than parabolic
escape velocity

Ian& lead 57 deg r ees A-a]* between the

angle radius vectors from
the center of the
earth to the soon
and to the launch
point at time of
launch.
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ooordinats (a,b,c), is given by (The inertial ooordinte sys8m is

deiinea in Appendix C.)

where

0

I 00si -8±311

si0i coi 

and i is the inclination angle between thq lunar plans and the

reerence trajectory plane.
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Appendix B

Navigational Measurem2nts

The best choice of celestial measurements made at any instant

of time along a space trajectory depends on the position of the

spacecraft within the geometry of the Space System. In this study

a variety of measurements made on different sets of celestial

obiects in an Earth-Moon System is possible. The problem is to

define the possible measurements at each instant of time and

determine which measurement yields the best estimate in position

as defined by Eq (34) in Sectio:n III.

It is assumed in this analysis the,t the spacecraft clock is

perfect. This assumption is consistent with the accuracy of present

day spacecraft clocks un comparatively short space trajectories, such

as the 50 hour lunar trajectory ccnsidered in this study. In

addition, the time interv.-L required to make a single celestial

measurement can be neglected, since the measuring device can be

programmed to saarch out and hold the selected celestial objects

prior to the time of measurement. The relationship between position

error and measuremen4 error is essentially linear over a relatively

wide range. Therefore, a linear perturbation theory can be used for

detailed studies of any of the methods discuased in this appendix

(Ref 3:12).

It was stated 4-. Section II that each measurement establishes

--omponent of spacecraft position along some direction in space.

If Q is the quantitv to be measured and Q is the difference between

46
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the trute and the reference values, then it car be shown that the

deviation in spacecraft position S r is

r Q1T r (B-I)

regardless of the type of measurement (Ref 3:223-225). Thus, the

h vector alone will characterize the type of measurement.

In the interest of computing simplicity, the celestial objects

used in this study were the earth, moon, and six (6) stars arbitraxily

located at an infinite distance along the coordinate axes of the space

coordinate system.

Earth-Moon Measurement

It can be shown (Ref 3:223-225) that for the earth-moon measure-

ment

h ( + (B-2)
r sin A Zsin A

where and n are the unit vectors from a point on the reference

trajectory to the earth and moon centers respectively, r and 7 are

the distances from the reference point to the earth ant. moon centers

respectively, and A is the angle from the earth line to the moon

line.

Planet-Star Measurement

This is simply a speci. case of the earth-moon measurement.

Eq B-2 can be modified to express the geometry vector of the earth-

star measurement as follows:
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r sin

where n is the unit vector from a point on the refoirence trajectory

to the star and AE is the angle from ti earth line to the star

line.

Xikewise, a similar relationship can be formalated for a

mon-star measurement.

h = ... (B-4)
Z Cdn AM

where, AM is the angle from the dion line to the star line.

AppArent D1iekr of. a Elanrt Msement

The gometry vector for the apparent diameter of a planet

(Ref 3:223-225) can be computed by

2 p 11 (B-5)

where d is the actual diameter of the pl at (dE :& i1.78127X10 6 ft.

and d = 11.-40573X,06 ft), x is the distance from tie point on the

ref erence tra4ectory to the planet center (r for the earth and Z

for the =oon), and np is the unit vector from rafetunce point to
the planet center (n for the earth and 2 for the moon).

forth erthan j
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Appendix C

The Fundamental Perturbation Matrices

The procedure used to generate the perturbatio, matrices

discussed in Section II is developed in outline form in Reference

1: pgs. 761-773. Sitce the perturbation matrices in this study

were developed for the elliptical spacecraft reference trajectory

and lunar orbit in the same plane, simplifications to the equation

given in the cited reference were made. These simplifications are

based on the fact that in this coplanar case,

f -= (C-l)

and i = 0 (C-2)

As shown in Fig C-l, f). is the true anomaly of the spacecraft

reference trajectory at the time of launch and i is the inclination

of the spacecraft reference trajectory and lunar orbit planes

measured at the ascending node (AN). The parameter w is defined

for the coordinate systems used in the cited reference and has no

meaning in the coordinate system of Fig. 1C. It is only stated here

as a key to the simplication process.

Computation of Rt) and ytj[ Matrices

The equations used to compute the R(t) and V(t) matrices

of this study are lised here for reference. The parameters used

in these equations are defined in Table C-I. The R(t) and V(t)

matrices were written in the form

R(t) = R'(t) Mpp
T

V(t) = V (t) MppT 
(C-3)
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Spacecr'aft *

R~eference\

a

b

E arth -.enter of mass (f ixod)

P - Perigee of spacecraft reference trajectory

S - Spacecraft position at launch

M - Moon center of mass at Launch

AN - Ascending node for general non-coplanar case

outlined in reference I

Fig. i-4 Space Coordinate System

5 0
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Table C-I

Reference Trajectory Parameters

Parameter (s) Definitin( 1)

tf time of flight = t - t L

t time measured from perigee

tL time of launch measured from perigee (0.0065147892 days)

r(L) position of spacecraft at time tL (see Fig C-I)

r position of spacecraft at time t (see Fig C-I)

v velocity of spacecraft at time t

a 3emi-major axis (0.95190686 lunar units 
(2 )

p semi-latus rectum (0.019964129 lunar 
units (2 )

e eccentricity (0.98945804)

E eccentric anomaly at time tL (0.1231237e rad.)

L true anomaly at time tL (1.4052372 rad)

/1 gravitational parameter (0.05386804 l.u. 3/day2 )

Note (1) The values listed are computed from equations
obtained from Ref i.

(2) 1 lunar unit = 238,857 miles
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where

ra(!L) rb(L) 0

MPPT= 
(C-4)[rb(L) ra(L) 0

r(L) r (L)

00

and adRII R21 0

R12 R22  0

[O 0 R32

(0-5)

V11  V21  0

V (t) = V12  V22  0

0 0 V33

The elements of the RI (t) and V (t) uatrices are as follows:

{era - Vatfj rb _
(Axp) %r(L) 2 ---

(C-6)

Var(L)2 _P(P-r(L)) + Isp) (L) rb
A)A5 sin 7"e r(L)

R2 1 = ,Ap)4 2ae r- 3 va- •(
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va B [ ar(L) 2 _ fj p: r L l~ ) (a - EL 2sin e2 kl
rb(L) rb (p + r(L)I (C-7)

R, a rb(L)F+ -

12A ) r(L t2e [rb- 3 V,, -f (C-

Vb)3 r(L rrL b - , a

sin E [2 6< e xr(L)

R22  ( ) { 2 a e [.-b t r 2 r3 ( ) 2 ]

5kc) ~ar(L)2 ~-r( a~j~ (arL.) +

r ar b(L) (p + r(L)) (C-9)

e 9 .p)l r(L)

R 33 p) -k Fra(L-)rb - arb(L,)J(-0

V 1  a ~) rb(L) t2et/14 ra tf -a ~I+ va a rbvb +
11 -Zp) -r () Iia - 2 r16r

(C-11)
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r (.ia)t sin E e2  er (L)

j va b b +r [2ar (L) 2 -

r2 r e7 atsin E

P (p -r(L)) a __ rb(L)vb (p +9 r(L)) (C-12)

V12 a rb(L) 3 rb 1 h

[b2r(L)2 ~- r L W P)er (L) v
r /t)Asin E e2______L

,Aer(L){ r .j ~-__

[arbP rb vbl+ r_____
Va + erb E]

F 2
-a(L - p L (a - ____ (L)va(p + r(L))

r(L

33 [aL b - a rb(L)] (C-3.5)
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Coznrntationa of RO(t) .uid V*(t) Hatriees

The R*(t) and V*(t) matrices are computed using the same equations

deriveTd for R(t) and V(t) if tL is replaced by tA (time of arrival) and

r(L) is replaced by r(A) (pCsition at tA).
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Appendix D

Assumed System Errors

This appendix contains the assumed r.m.s. inje.ction errors,

the initial correlation matrix (Eo) based on these errors,

and the assumed variance of our optical measuring device

(Ref 2:28-29).

Initial Correlation Matrix J§J

The correlation matrix of the injection errors is based on

the assumed r.m.s. injection errors contained in Table D-I

Table D-I

Assumed R.M.S. Injection Errors

Altitude Track Range

Position 10,000 ft 15.000) ft 5,000 ft

Velocity 15 ft/sec 6 ft/sec 4 ft/sec

The correlation matrix below was obtained by a transfor.mation

from the altitude, track, ard range coordinate system of Table

D-I to the (a,b,c) cooreinate system defiaerd in Fig. C-1. The

basic units of the Eo matrix as shown in .. D-1 axe lunar units

X 10 -O and lunar units per day X 10- 7 .
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1.87 -1.019 -0.413 o0 0

-1.019 0.957 0.388 0 0 0

-0.413 0.388 0.157 0 0 0

E0  0 0 0 0.557 -2.353 -0.647

0 0 0 -2.553 11.692 2.963

0 0 0 -0.647 2.963 0.751

(D-1)
The initial uncertainties in position and velocity are 3.543 miles and

11.374 miles per hor.

yVar Unce("n2 ) of the 0DticI SMtn

The standard deviation of the optical measuring device (sextant) was

assumed to be approximately 0.05 milliradians (10 seconds of arc). However,

since all the angular measurements in this study are made relatively close

to the earth and moon, an additional factor was introduced in some of the

computer runs tc accodate the decrease in accuracy as the spacecraft

gets close to a planet. Based on these* considerations the sextant when

measuring the angle between the earth and moon was assumed to have a

random error whose variance
1 2

(O.00005) ' (rn)) red, if r(tn)< (t)

(D-2)
(0-00005j' + (z'tn)) tad, if r(tn)P (t.)

where r(tn) and Z('Vn) are the distances in miles from the spacecraft to

the earth and moon, respectively. For measurements involving only one

pla .t, the appropriate variance was used; for example, the measurement

of the angle between the earth and a star would use only the first part

of Eq. D-2.
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